TA16

series

Product Segments

- Care Motion
 - Comfort Motion - Industrial Motion

TiMOTION's TA16 series linear actuator is similar to the TA2 linear actuator, but is specifically designed for low-noise medical applications where a compact linear actuator is needed. It is available with optional IP66 protection and Hall sensors for position feedback. Certificates for the TA16 include IEC60601-1, ES60601-1, IEC60601-1-2, UL962, and EMC.

General Features

Voltage of motor
Maximum load
Maximum speed at full load

Stroke
Minimum installation dimension
Color
IP rating
Options
Certificate

12, 24, 36, 48V DC
$3,500 \mathrm{~N}$ in push and pull
$13.5 \mathrm{~mm} / \mathrm{s}$ (with $1,500 \mathrm{~N}$ in a push or pull condition)
20~600mm
\geq Stroke + 112mm
Silver
Up to IP66
POT, Hall sensor(s)
IEC60601-1, ES60601-1, IEC60601-1-2,
UL962, EMC
$+5^{\circ} \mathrm{C} \sim+45^{\circ} \mathrm{C}$

Operational temperature range

With very low noise, small size for easy installation
Suitable for patient hoist application

Drawing

Standard Dimensions (mm)

Load and Speed

CODE	Load (N)		Self Locking Force (N)	Typical Current (A)		Typical Speed (mm/s)	
	Push	Pull		No Load 32V DC	With Load 24V DC	No Load 32V DC	With Load 24V DC
Motor Speed (3800RPM, Duty Cycle 10\%)							
A	2500	2500	2500	1.2	2.8	5.2	3.0
B	2000	2000	2000	1.2	2.8	8.3	4.7
C	1500	1500	1500	1.2	2.8	11.9	7.0
D	1000	1000	1000	1.2	2.8	17.7	10.3
Motor Speed (5600RPM, Duty Cycle 10\%)							
G	3500	3500	3500	1.5	4.7	12.0	6.5
J	2000	2000	2000	1.5	3.2	17.0	10.5
K	1500	1500	1500	1.5	3.5	23.5	13.5

Note

1 Please refer to the approved drawing for the final authentic value.
2 This self-locking force level is reached only when a short circuit is applied on the terminals of the motor. All the TiMOTION control boxes have this feature built-in.

3 Operational temperature range at full performance: $+5^{\circ} \mathrm{C} \sim+45^{\circ} \mathrm{C}$
4 The current \& speed in table are tested with 24 V DC motor. With a 12 V DC motor, the current is approximately twice the current measured in 24 V DC. With a 36 V DC motor, the current is approximately two-thirds the current measured in 24 V DC. With a 48 V DC motor, the current is approximately half the current measured in 24 V DC. Speed will be similar for all the voltages.

5 The current \& speed in table and diagram are tested with TiMOTION control boxes, and there will be around 10% tolerance depending on different models of the control box. (Under no load condition, the voltage is around 32V DC. At rated load, the voltage output will be around 24 V DC)

6 Standard stroke: Min. $\geq 20 \mathrm{~mm}$, Max. please refer to below table.

CODE	Load (N)	Max Stroke (mm)
G	≤ 3500	300
A	≤ 2500	400
B, J	≤ 2000	450
C, K	≤ 1500	500
D	≤ 1000	600

Performance Data (24V DC Motor)

Motor Speed (3800RPM, Duty Cycle 10\%)

Speed vs. Load

Current vs. Load

Performance Data (24V DC Motor)

Motor Speed (5600RPM, Duty Cycle 10\%)

Speed vs. Load

Current vs. Load

Voltage	$1=12 \mathrm{~V} \mathrm{DC}$	$2=24 \mathrm{~V} \mathrm{DC}$	$3=36 \mathrm{~V} \mathrm{DC}$	$4=48 \mathrm{~V} \mathrm{DC}$
Load and Speed	See page 2			

Stroke (mm) See page 2

Retracted Length See page 6

(mm)

Rear Attachment (mm)	$1=$ Aluminum casting, U clevis, width 6.0, depth 12.2, hole 6.4 , one piece casting with gear box 2 = Aluminum casting, U clevis, width 6.0, depth 12.2, hole 8.0, one piece casting with gear box 3 = Aluminum casting, U clevis, width 6.0 , depth 12.2 , hole 10.0 , one piece casting with gear box	
See page 7		
Front Attachment (mm)	1 = Aluminum casting, no slot, hole 6.4 2 = Aluminum casting, no slot, hole 8.0	5 = Aluminum casting, U clevis, width 6.0, depth 13.0, hole 8.0
See page 7	$\begin{aligned} & 3=\text { Aluminum casting, no slot, hole } 10.0 \\ & 4=\text { Aluminum casting, U clevis, width } 6.0 \text {, depth 13.0, } \\ & \text { hole } 6.4 \end{aligned}$	$\begin{aligned} & 6=\text { Aluminum casting, U clevis, width } 6.0 \text {, depth 13.0, } \\ & \text { hole } 10.0 \end{aligned}$
Direction of Rear Attachment (Counterclockwise)	$1=90^{\circ} \quad 2=0^{\circ}$	

See page 7

IP Rating	$1=$ Without	$2=\operatorname{IP54}$

Functions for	1 = Two switches at full retracted / extended positions to cut current			
Limit Switches	2 = Two switches at full retracted / extended positions to cut current + 3rd LS to send signal			
See page 8	$3=$ Two switches at full retracted / extended positions to send signal			
	4 = Two switches at full retracted / extended positions to send signal + 3rd LS to send signal			
Special Functions for Spindle SubAssembly	$0=$ Without (Standard)		2 = Standard push only	
	1 = Safety nut		3 = Standard push only + safety nut	
Output Signals	$0=$ Without	$1=\mathrm{POT}$	4 = Hall sensor * 1	5 = Hall sensor * 2
Connector	$1=\operatorname{DIN} 6 P, 90^{\circ} \text { plug }$	$\mathrm{C}=\mathrm{Y}$ cable (For direct cut system, water proof, anti pull) $\quad \mathrm{G}=$ Audio plug		
See page 8	$\begin{aligned} & 2 \text { = Tinned leads } \\ & 4=\text { Big 01P, plug } \end{aligned}$	$\mathrm{E}=$ Molex 8P, plug		
		$\mathrm{F}=\mathrm{DIN}$ 6P, 180° plug		
Cable Length (mm)	$0=$ Straight, 100	$3=$ Straight, 1000	6 = Straight, 2000	B $\sim H=$ For direct cut system See page 8
	1 = Straight, 500	4 = Straight, 1250	7 = Curly, 200	
	$2=$ Straight, 750	$5=$ Straight, 1500	8 = Curly, 400	

TA16 Ordering Key Appendix

Retracted Length (mm)

1. Calculate $A+B+C+D=Y$
2. Retracted length needs to \geq Stroke $+Y$

A. Rear / Front Attachment

Front Attachment	Rear Attachment
$1,2,3$	
$\mathbf{1 , 2 , 3}$	+112
$\mathbf{4 , 5 , 6}$	+122

B. Load V.S. Stroke

C. Load V.S. Spindle Functions

Spindle Functions	Load (N)		
	A, B	G	C, D, J, K
$\mathbf{0}$	-	-	-
$\mathbf{1}$	+10	+5	+10
$\mathbf{2}$	+2	+2	+2
$\mathbf{3}$	+12	+7	+12

Stroke (mm)	Load (N)	
	<3500	$=3500$
20~150	-	+13
151~200	+8	+21
201~250	+8	+21
251~300	+13	+26
301~350	+13	+26
351~400	+18	+31
401~450	+23	+36
451~500	+28	+41
501~550	+33	+46
551~600	+38	+51

D. Output Signals

CODE
0, 4, 5
1
$+36$

Rear Attachment (mm)

$1=$ Aluminum casting, U clevis, width 6.0 , depth 12.2 , hole 6.4 , one piece casting with gear box

12.2

2 = Aluminum casting, U clevis, width 6.0, depth 12.2, hole 8.0, one piece casting with gear box

12.2

3 = Aluminum casting, U clevis, width 6.0 , depth 12.2, hole 10.0, one piece casting with gear box

Front Attachment (mm)

3 = Aluminum casting, no slot, hole 10.0

4 = Aluminum casting, U clevis, width 6.0, depth 13.0, hole 6.4

$\varnothing 6.4$

Direction of Rear Attachment (Counterclockwise)

$2=0^{\circ}$

TA16 Ordering Key Appendix

Functions for Limit Switches

Wire Definitions

CODE	Pin					
	1 (Green)	2 (Red)	3 (White)	4 (Black)	5 (Yellow)	6 (Blue)
1	extend (VDC+)	N/A	N/A	N/A	retract (VDC+)	N/A
2	extend (VDC+)	N/A	middle switch pin B	middle switch pin A	retract (VDC+)	N/A
3	extend (VDC+)	common	upper limit switch	N/A	retract (VDC+)	lower limit switch
4	extend (VDC+)	common	upper limit switch	medium limit switch	retract (VDC+)	lower limit switch

Connector

$1=$ DIN 6P, 90° plug
$2=$ Tinned leads

$4=$ Big 01P, plug

$C=Y$ cable (For direct cut system, water proof, anti pull)

Cable length for direct cut system (mm)

CODE	L1	L2	L3
B	100	100	100
C	100	1000	400
D	100	2700	500
E	1000	100	100
F	100	600	1000
G	1500	1000	1000
H	100	100	1200

$E=$ Molex 8P, plug

$F=\operatorname{DIN} 6 P, 180^{\circ}$ plug

$\mathrm{G}=$ Audio plug

Terms of Use

The user is responsible for determining the suitability of TiMOTION products for a specific application. TiMOTION products are subject to change without prior notice.

