TA29

series

Product Segments

- Care Motion

TiMOTION's TA29 is one of our new generation medical actuators, which can lift up to 6,000N, yet has compact installation dimension. In addition to this, its IP rating is up to IP66W. The TA29 is highly recommended for various medical applications that require a short retracted length, yet need to support a large force, such as the leg adjustment or sling angle actuator on the patient hoist system.

General Features

Voltage of motor	$12,24 \mathrm{~V}$ DC; 12, 24V DC (PTC)
Maximum load	$6,000 \mathrm{~N}$ in push
Maximum load	$4,000 \mathrm{~N}$ in pull
Maximum speed at full load	$17.7 \mathrm{~mm} / \mathrm{s}$
	(with 1500 N in a push / pull condition)
Minimum installation dimension	$\geq 178 \mathrm{~mm}$
Color	Black or grey
IP rating	Up to IP66W
Operational temperature range	$+5^{\circ} \mathrm{C} \sim+45^{\circ} \mathrm{C}$
Suitable for patient hoist application	

Voltage of motor
Maximum load
Maximum load
Maximum speed at full load

Minimum installation dimension
Color

Operational temperature range
Suitable for patient hoist application

Drawing

Standard Dimensions
(mm)

Load and Speed

CODE	Load (N)		Self Locking Force (N)	Typical Current (A)		Typical Speed (mm/s)	
	Push	Pull		No Load 32V DC	With Load 24V DC	No Load 32V DC	With Load 24V DC
Motor Speed (4800RPM, Duty Cycle 10\%)							
B	1500	1500	1500	1.5	5.0	30.2	17.7
C	2500	2500	2500	1.5	5.0	16.0	9.1
D	3500	3500	3500	1.5	5.0	10.9	6.5
E	4500	4000	4500	1.5	4.5	6.5	4.0
G	6000	4000	6000	1.5	5.0	6.0	3.5
Motor Speed (5200RPM, Duty Cycle 10\%)							
H	1000	1000	1000	1.5	3.5	30.0	15.0
K	1500	1500	1500	1.5	3.5	20.0	10.0
L	2000	2000	2000	1.5	3.7	15.0	7.5
M	2500	2500	2500	1.5	3.7	10.0	5.0
N	4000	4000	4000	1.5	3.7	5.4	2.8

Note

1 Please refer to the approved drawing for the final authentic value.
2 This self-locking force level is reached only when a short circuit is applied on the terminals of the motor. All the TiMOTION control boxes have this feature built-in.

3 The current \& speed in table are tested with 24 V DC motor. With a 12 V DC motor, the current is approximately twice the current measured in 24 V DC; speed will be similar for both voltages.

4 The current \& speed in table are tested when the actuator is extending under push load.
5 The current \& speed in table and diagram are tested with TiMOTION control boxes, and there will be around 10% tolerance depending on different models of the control box. (Under no load condition, the voltage is around $32 \mathrm{~V} D \mathrm{C}$. At rated load, the voltage output will be around 24 V DC)

6 Standard stroke: Min. $\geq 25 \mathrm{~mm}$, Max. please refer to below table.

$\mathbf{L o a d}(\mathbf{N})$	Max Stroke (mm)
$\mathbf{6 0 0 0}$	450
$\mathbf{3 5 0 0} \leq \mathbf{l o a d} \leq \mathbf{4 5 0 0}$	600
$\mathbf{< 3 5 0 0}$	1000

Speed vs. Load

Current vs. Load

Speed vs. Load

Current vs. Load

TA29

Voltage	$1=12 \mathrm{~V} \mathrm{DC}$	$2=24 \mathrm{~V} \mathrm{DC}$	$5=24 \mathrm{~V} \mathrm{DC} PTC$,	$6=12 \mathrm{~V} \mathrm{DC}$, PTC
Load and Speed	See page 3			

Stroke (mm) See page 3

Retracted Length See page 7
$(\mathbf{m m})$

Rear Attachment (mm)	= Aluminum casting, U clevis, slot 6.2, depth 12.2, hole 10.2	$4=$Aluminum casting, U clevis, slot 6.2, depth 12.2, hole 12.2 See page 8
Front Attachment $(\mathbf{m m})$	3 = Aluminum CNC, without slot, hole 10.2	4 = Aluminum CNC, without slot, hole 12.2

See page 8

Direction of Rear Attachment (Counterclockwise)	$1=90^{\circ}$

See page 8

Color	$1=$ Black	$2=$ Grey (Pantone 428C)		
IP Rating	$1=$ Without	$2=\mid P 54$	$3=\mid P 66$	$5=\mid P 66 W$

Special Functions for Spindle SubAssembly	$0=$ Without (Standard)			
Functions for Limit Switches See page 9	$1=$ Two switches at full retracted / extended positions to cut current 2 = Two switches at full retracted / extended positions to cut current + third one in between to send signal $3=$ Two switches at full retracted / extended positions to send signal 4 = Two switches at full retracted / extended positions to send signal + third one in between to send signal 5 = Two switches at full retracted/extended positions to send signal (Operate with control box: TC1, TC8, TC10, TC14)			
Output Signals	$0=$ Without	2 = Hall sensor * 2		
Connector See page 9	$\begin{aligned} & 1=\text { DIN 6P, } 90^{\circ} \text { plug } \\ & 2=\text { Tinned leads } \\ & 4=\text { Big 01P, plug } \end{aligned}$	$\mathrm{C}=\mathrm{Y}$ cable (for direct cut system, water proof, anti pull)	$\begin{aligned} & \mathrm{E}=\text { Molex 8P, plug } \\ & \mathrm{F}=\text { DIN } 6 \mathrm{P}, 180^{\circ} \text { plug } \end{aligned}$	
Cable Length (mm)	$\begin{aligned} & 0=\text { Straight, } 100 \\ & 1=\text { Straight, } 500 \\ & 2=\text { Straight, } 750 \end{aligned}$	$\begin{aligned} & 3=\text { Straight, } 1000 \\ & 4=\text { Straight, } 1250 \\ & 5=\text { Straight, } 1500 \end{aligned}$	$\begin{aligned} & 6=\text { Straight, } 2000 \\ & 7=\text { Curly, } 200 \\ & 8=\text { Curly, } 400 \end{aligned}$	B $\sim H=$ For direct cut system See page 7

TA29 Ordering Key Appendix

Retracted Length (mm)

1. Calculate $A+B=Y$
2. Retracted length needs to \geq Stroke $+Y$
3. Retracted length needs to >178

A. Front Attachment

3, 4

B. Stroke	Load (N)				
Stroke (mm)	<3500	3500	4000	4500	6000
25~150	-	+5	+10	+15	+30
151~200	+8	+13	+18	+23	+38
201~250	+8	+13	+18	+23	+38
251~300	+13	+18	+23	+28	+43
301~350	+13	+18	+23	+28	+43
351~400	+18	+23	+28	+33	+48
401~450	+23	+28	+33	+38	+53
451~500	+28	+33	+38	+43	+58
501~550	+33	+38	+43	+48	+63
551~600	+38	+43	+48	+53	+68
For Push Application	+6	+6	+6	+6	0

TA29 Ordering Key Appendix

Rear Attachment (mm)

3 = Aluminum casting, U clevis, slot
6.2, depth 12.2, hole 10.2

4 = Aluminum casting, U clevis, slot
6.2, depth 12.2, hole 12.2

Front Attachment (mm)

3 = Aluminum CNC, without slot, hole 10.2

4 = Aluminum CNC, without slot, hole 12.2

Direction of Rear Attachment (Counterclockwise)
$1=90^{\circ}$
$2=0^{\circ}$

TA29 Ordering Key Appendix

Functions for Limit Switches

Wire Definitions

CODE	Pin					
	1 (Green)	2 (Red)	3 (White)	4 (Black)	5 (Yellow)	6 (Blue)
1	extend (VDC+)	N/A	N/A	N/A	retract (VDC+)	N/A
2	extend (VDC+)	N/A	middle switch pin B	middle switch pin A	retract (VDC+)	N/A
3	extend (VDC+)	common	upper limit switch	N/A	retract (VDC+)	lower limit switch
4	extend (VDC+)	common	upper limit switch	medium limit switch	retract (VDC+)	lower limit switch
5	extend (VDC+)	N/A	upper limit switch	common	retract (VDC+)	lower limit switch

Connector

1 = DIN 6P, 90° plug

$2=$ Tinned leads

4 = Big 01P, plug

$C=Y$ cable (for direct cut system, water proof, anti pull)

Cable length for direct cut system $(\mathbf{m m})$			
CODE	L1	L2	L3
B	100	100	100
C	100	1000	400
D	100	2700	500
E	1000	100	100
F	100	600	1000
G	1500	1000	1000
H	100	100	1200

$E=$ MOLEX 8P, plug

$F=\operatorname{DIN} 6 P, 180^{\circ}$ plug

Terms of Use

The user is responsible for determining the suitability of TiMOTION products for a specific application. TiMOTION products are subject to change without prior notice.

