TL3

series

Product Segments

- Care Motion
 - Comfort Motion - Industrial Motion

The TL3 columns from TiMOTION are made up of three extruded aluminum tubes of rectangular shape that give the system great stability and a high stroke with reduced retracted length. This electric lifting column allows for an easy integration into many height adjustable workstation applications, such as an exam chair in healthcare industry.

General Features

Maximum load \& self - locking force Maximum dynamic bending moment Maximum static bending moment
Maximum speed at full load

Minimum installation dimension
Dimension of cross section
Stroke
Certificate
Operational temperature range:
Options

4,000N in push
$1,000 \mathrm{Nm}$
$2,000 \mathrm{Nm}$
$24 \mathrm{~mm} / \mathrm{s}$
(with $1,000 \mathrm{~N}$ in a push condition)
\geq Stroke / 2+150mm
$177.4 \times 150.7 \mathrm{~mm}$
250~1200mm
IEC60601-1, EMC
$+5^{\circ} \mathrm{C} \sim+45^{\circ} \mathrm{C}$
POT, Hall sensors, direct cut system

Drawing

Standard Dimensions (mm)

Load and Speed

CODE	Load (N)	Self Locking Force (N)	Typical Current (A)	Typical Speed (mm/s)		
			No Load	With Load	No Load	With Load
	Push		32 VDC	24 VDC	32 VDC	24V DC

Motor Speed (2200RPM, duty cycle 10\%)

B	4000	4000	2.5	6.3	14.5	7.6
C	2000	2000	2.5	4.3	22.0	13.0
D	1000	1000	2.5	3.8	39.0	24.0
Motor Speed $(2800$ RPM, duty cycle 10\%)						
E	4000	4000	3.5	7.5	18.5	9.4
F	2000	2000	3.5	6.3	35.0	20.0
Motor Speed $(3800$ RPM, duty cycle 10\%)						
G	4000	4000	4.0	10.8	28.0	13.7

Note

1 Parameters above are from tested average, please refer to approval drawing for final value.
2 This self-locking force level is reached only when a short circuit is applied on the terminals of the motor. All the TiMOTION control boxes have this feature built-in.

3 The current \& speed in table are tested with 24 V DC motor. With a 12 V DC motor, the current is approximately twice the current measured in 24 V DC; speed will be similar for both voltages.
4 Bending moment Y direction $=X^{*} 0.8$
5 Static bending moment $=$ dynamic*2

Dynamic bending moment (Nm)- X direction

Stroke (mm)	$\mathrm{S} / 2+150$	$\mathrm{~S} / 2+220$
$\mathbf{1 0 0 - 3 0 0}$	700	1000
$\mathbf{3 0 1 - 5 0 0}$	500	800
$\mathbf{5 0 1 - 7 0 0}$	300	500
$\mathbf{7 0 1 - 1 2 0 0}$	200	200

Performance Data (24V DC Motor)

Motor Speed (2200RPM, Duty cycle 10\%)

Speed vs. Load

Current vs. Load

Performance Data (24V DC Motor)
Motor Speed (2800RPM, Duty cycle 10\%)

Speed vs. Load

Current vs. Load

Performance Data (24V DC Motor)

Motor Speed (3800RPM, Duty cycle 10\%)

Speed vs. Load

Current vs. Load

TL3 Ordering Key - Top End Socket

TL3

Note

1 The TL3 is designed especially for push applications, not suitable for pull applications.

TL3 Ordering Key - Side Cable

TL3

Voltage	$1=12 \mathrm{~V}$ DC	$5=24 \mathrm{~V}$ DC, thermal control
Load and Speed	See page 2	
Stroke (mm)	$250 \sim 1200$	
Retracted Length (mm)	See page 9	
Cable Exit $2=$ Bottom side cable $3=$ Top side cableB = Top + Bottom side cable (Please contact engineers for details of cable types) Sote: please contact TiMOTION before making an order		

Special Functions for Spindle Sub-assembly	$0=$ Without (Standard)	1 = Safet	
Functions for Limit Switches See page 10	$1=$ Two switches at full retracted / extended positions to cut current 3 = Two switches at full retracted / extended positions to send signal		
IP Rating	1 = Without	$2=1$ PX4	3 = IPX6
Output Signals	$0=$ Without	2 = Hall	$3=$ POT

Connector See page 10	$1=$ DIN 6P, 90° plug	$\mathrm{F}=\mathrm{DIN} 6 \mathrm{P}, 180^{\circ}$ plug	H = Molex 8P 180 ${ }^{\circ}$
	$2=$ Tinned leads	$\mathrm{G}=$ Molex 8P 90°	
Cable Length (mm)	1 = Straight, 500	$3=$ Straight, 1000	$5=$ Straight, $1500 \quad 7=$ Straight, 2000
	2 = Straight, 750	$4=$ Straight, 1250	6 = Straight, 1750
Color	$\begin{aligned} & 1=\text { Black (Black cable set) } \\ & 2=\text { Silver (428C color cable set) } \end{aligned}$		3 = Silver (Black cable set)
Tubes Direction See page 11	$0=$ Thinner on top	$1=$ Wider on top	Note: If "top+bottom cable" in Cable Exit section is selected , could only select \#0
Grounding Function	$0=$ Without	1 = With	

Note

1 The TL3 is designed especially for push applications, not suitable for pull applications.

TL3 Ordering Key - Direct Cut

TL3

Voltage	$5=24 \mathrm{~V}$ DC, thermal protector
Load and Speed	See page 2
Stroke (mm)	100~1200
Retracted Length (mm)	See page 9
Cable Exit See page 9	$\begin{aligned} & \text { B = Top side - for TH; Bottom side - for TP } \\ & C=\text { Bottom side }-Y \text { cable, for TH }+ \text { TP } \\ & \text { D = Top side - for the 2nd column; Bottom side - for TH \& TP; direct cut operation with } 2 \text { columns } \\ & E=\text { Top side - for the 2nd column \& TH; Bottom side - for TP; direct cut operation with } 2 \text { columns } \end{aligned}$
Special Functions for Spindle Sub-assembly	$0=$ Without (Standard) $1=$ Safety nut
Functions for Limit Switches	1 = Two switches at full retracted / extended positions to cut current

See page 10			
IP Rating	$1=$ Without	$2=\operatorname{IPX} 4$	$3=\operatorname{IPX} 6$
Output Signals	$0=$ Without		

Connector	C = Direct cut, water proof, anti-pull	
See page 10		
Cable Length (mm)	B $=$ Cable exit \#B, L2 $=\mathrm{L} 3=100$	$D=$ Cable exit \#D, $\mathrm{L} 2=\mathrm{L} 3=\mathrm{L} 4=100$
See page 11	C $=$ Cable exit \#C, L1 $=\mathrm{L} 2=\mathrm{L} 3=100$	$\mathrm{E}=$ Cable exit \#E, L2 $=\mathrm{L} 3=\mathrm{L} 4=100$
Color	1 = Black (With black cable set)	$3=$ Matte silver (With black cable set)
	2 = Matte silver (With 428C color cable set)	
Tubes Direction	$0=$ Thinner on top $1=$ Wider on top	
See page 11		
Grounding Function	$0=$ Without $\quad 1=$ With	

Note

1 The TL3 is designed especially for push applications, not suitable for pull applications.

TL3 Ordering Key Appendix

Retracted Length (mm)

1. Retracted length needs to $\geq A+B+C$

A. Load (N)	1000	2000	4000
+150 or Stroke $/ 2+220$			

Note

1 The minimum retracted length generated by the formula - Stroke / 2+150
applies to the minimum bending moment rating. Please refer to the left column
of the "Dynamic bending moment chart " on page 2 .

B. Cable Exit				
CODE	Top End Socket	Bottom Side Cable	Top Side Cable	Top + Bottom side cable
Direct Cut				
$\mathbf{1}$	-	-	-	-
$\mathbf{2}$	-	-	-	-
$\mathbf{3}$	-	-	-15	-
B	-	-	+35	-
B, \mathbf{D}, \mathbf{E}	-	-	-	-
C	-	-	-	-

C. When with POT (When without POT, $\mathrm{C}=\mathbf{0}$)

Cable Exit Code	Top End Socket	Bottom Side Cable	Top Side Cable
$\mathbf{1}$	+40	-	-
$\mathbf{2}$	-	+40	-
$\mathbf{3}$	-	-	+40

Cable Exit

$1=$ Top end socket

acuave

2 = Bottom side cable

3 = Top side cable

$B=$ Top (to TC) + Bottom (to TH) side cable

TL3 Ordering Key Appendix

Cable Exit

$C=$ Bottom side $-Y$ cable, for $T H+T P$
D = Top side - for the 2nd column; Bottom side - for TH \& TP; direct cut operation with 2 columns

$E=$ Top side - for the 2nd column \& TH; Bottom side - for TP; direct cut operation with 2 columns

Functions for Limit Switches

Wire Definitions						
CODE	Pin					
	- 1 (Green)	2(Red)	$\bigcirc 3$ (White)	4 (Black)	5 (Yellow)	6 (Blue)
1	extend (VDC+)	N/A	N/A	N/A	retract (VDC+)	N/A
3	extend (VDC+)	common	upper limit switch	N/A	retract (VDC+)	lower limit switch

Connector

$1=$ DIN 6P, socket (Top end socket)

$1=$ DIN 6P, 90° plug (Side cable)

C = Direct cut, water proof, anti-pull

For TH:
long DIN 5P (Pin array 240°),
180° socket (with anti-pull clip)

For TP:
long DIN 5P (Pin array 240°), 180° plug (with O-ring)
$\mathrm{G}=$ Molex 8P 90°

$H=$ Molex 8P 180°

$2=$ Tinned leads

For Columm 2:
long DIN 6P (Pin array 240°),
180° plug (with anti-pull clip)
$F=\operatorname{DIN} 6 P, 180^{\circ}$ plug

TL3 Ordering Key Appendix

Cable Length (mm)

Tubes Direction

Terms of Use

The user is responsible for determining the suitability of TiMOTION products for a specific application. TiMOTION products are subject to change without prior notice.

