VN1

Product Segments

- Industrial Motion

The VN1 series linear actuator was specifically designed for ventilation applications to help remove smoke, heat, and toxic gases from the building quickly in the event of a fire. It was also designed to create a minimum smoke layer in the lower parts of the room. The VN1 is made of high-quality aluminum, suitable for applications like fall-through protection systems and greenhouses. The VN1 is equipped with either a 12 V or 24 V DC motor. The AC version of the VN1 is equipped with a built-in SMPS which allows the supply of alternating current.

General Features

Max. load
Max. speed at max. load
Max. speed at no load
Retracted length

IP rating
Stroke
Options

Voltage
Color
Operational temperature range
Operational temperature range
at full performance

3,500N (push / pull)
$4.2 \mathrm{~mm} / \mathrm{s}$
$10.4 \mathrm{~mm} / \mathrm{s}$
$\geq 217 \mathrm{~mm}$ (DC version)
$\geq 437 \mathrm{~mm}$ (AC version)
*upon the front attachment
IP66
20~500mm
Hall sensors, safety nut, window seal mechanism

12V DC, 24V DC, 100~240V AC
Black, grey
$-15^{\circ} \mathrm{C} \sim 50^{\circ} \mathrm{C}$
$+5^{\circ} \mathrm{C} \sim+45^{\circ} \mathrm{C}$

Drawing

Dimensions
with DC Voltage
(mm)

Dimensions
with AC Voltage
(mm)

Load and Speed - DC Motor

CODE	Load (N)		Self Locking	Typical Current (A)	Typical Speed (mm/s)	
	Push	Pull	Force (N)	No Load	With Load	No Load

Motor Speed (5200RPM, Duty Cycle 30\%)

B	500	500	500	1.5	1.7	10.4	8.3
C	1000	1000	1000	1.5	1.7	6.5	5.1
Motor Speed (5200RPM, Duty Cycle 10\%)							
D	2000	2000	2000	1.5	2.9	10.4	7.4
E	3500	3500	3500	1.5	3.9	6.5	4.2

Note

1 Please refer to the approved drawing for the final authentic value.
2 This self-locking force level is reached only when a short circuit is applied on the terminals of the motor. All the TiMOTION control boxes have this feature built-in.

3 The current \& speed in table are tested with 24 V DC motor. With a 12 V DC motor, the current is approximately twice the current measured in 24 V DC; speed will be similar for both voltages. If choosing the voltage option \#U, its performance is as the same as 24 V DC motor.

4 The current \& speed in table are tested when the actuator is extending under push load.
5 The current \& speed in table and diagram are tested with TiMOTION control boxes, and there will be around 10% tolerance depending on different models of the control box. (Under no load condition, the voltage is around 32 V DC. At rated load, the voltage output will be around 24 V DC)

6 Standard stroke: Min. $\geq 20 \mathrm{~mm}$, Max. please refer to below table.

CODE	Load (N)	Max Stroke (mm)
E	≤ 3500	300
D	≤ 2000	450
B, C	≤ 1000	500

Load and Speed - AC Motor

CODE	Load (N)		Self Locking Force (N)	Typical Current (A)				Typical Speed (mm/s)			
	Push	Pull		No Load		With Load		No Load		With Load	
				110VAC	220VAC	110VAC	220VAC	110VAC	220VAC	110VAC	220VAC
Motor Speed (5200RPM, Duty Cycle 30\%)											
B	500	500	500	0.3	0.15	0.4	0.2	10.4	10.4	8.3	8.3
C	1000	1000	1000	0.3	0.15	0.4	0.2	6.5	6.5	5.1	5.1
Motor Speed (5200RPM, Duty Cycle 10\%)											
D	2000	2000	2000	0.3	0.15	0.7	0.35	10.4	10.4	7.4	7.4
E	3500	3500	3500	0.3	0.15	0.9	0.45	6.5	6.5	4.2	4.2

Note

1 Please refer to the approved drawing for the final authentic value.
2 This self-locking force level is reached only when a short circuit is applied on the terminals of the motor. All the TiMOTION control boxes have this feature built-in.

3 The current \& speed in table are tested when the actuator is extending under push load.
4 Standard stroke: Min. $\geq 20 \mathrm{~mm}$, Max. please refer to below table.

CODE	Load (N)	Max Stroke (mm)
E	≤ 3500	300
D	≤ 2000	450
B, C	≤ 1000	500

Performance Data (24V DC Motor)

Motor Speed (5200RPM, Duty Cycle 30\%)

Speed vs. Load

Current vs. Load

Performance Data (24V DC Motor)

Motor Speed (5200RPM, Duty Cycle 10\%)

Speed vs. Load

Current vs. Load

Performance Data (110V AC Motor)

Motor Speed (5200RPM, Duty Cycle 30\%)

Speed vs. Load

Current vs. Load

Performance Data (110V AC Motor)

Motor Speed (5200RPM, Duty Cycle 10\%)

Speed vs. Load

Current vs. Load

Performance Data (220V AC Motor)

Motor Speed (5200RPM, Duty Cycle 30\%)

Speed vs. Load

Current vs. Load

Speed vs. Load

Current vs. Load

VN1

Voltage	$1=12 \mathrm{~V} \mathrm{DC}$	$\mathrm{U}=24 \mathrm{~V} \mathrm{DC}$
Load and Speed	See page 3	
Stroke (mm)	See page 3	
Retracted Length (mm)	See page 11	
Rear Attachment $(\mathbf{m m})$	B = Outer tube slide clamp block, hole M8	C = Outer tube slide clamp block, hole ø8

See page 11
Trunnion Mount $\quad 0=$ Without
Bracket

Front Attachment	$\mathrm{B}=$ Rod end bearing, hole 8.0	3 = Aluminum casting, no slot, hole 10.0
$(\mathbf{m m)}$	$\mathrm{C}=$ Rod end bearing, hole 10.0	$7=$ Aluminum CNC, U clevis, slot 6.2 , depth 16.0, hole 6.4
See page 12	1 $=$ Aluminum casting, no slot, hole 6.4	$8=$ Aluminum CNC, U clevis, slot 6.2 , depth 16.0, hole 8.0
	$2=$ Aluminum casting, no slot, hole 8.0	$9=$ Aluminum CNC, U clevis, slot 6.2 , depth 16.0, hole 10.0

Direction of	$0=$ Without (When rear attachment is outer tube slide clamp block)
Rear Attachment	
(Counterclockwise)	

See page 12

Color	1 = Black	2 = Panto	
IP Rating	1 = Without	$2=1$ P54	3 IP66
Special Functions for Spindle SubAssembly	$0=$ Without	1 = Safet	
Functions for Limit Switches	$\begin{aligned} & 1=\text { Two swi } \\ & 3=\text { Two swi } \\ & 6=\text { Two swi } \\ & \text { indicato } \\ & 7=\begin{array}{l} \text { Two swi } \\ \text { indicato } \end{array} \end{aligned}$	racted / ext racted / ext acted / ext acted / ext	cut current send signa cut current send signal
Output Signal	$0=$ Without	2 = Hall s	
Window Seal Mechanism	$0=$ Without	1 = With	

Retracted Length (mm)

1. Calculate $A+B=Y$
2. When Voltage choosing \#1, \#2, Retracted length needs to $=$ Stroke $+Y \geq 217 \mathrm{~mm}$
3. When Voltage choosing \#U, Retracted length needs to $=$ Stroke $+Y \geq 437 \mathrm{~mm}$

A.	
Front Attach. Rear Attach. B, C B +199 C +207 $\mathbf{1 , 2 , 3}$ +171 $\mathbf{7 , 8 , 9}$ +191 $\mathbf{}$	

B.

Stroke (mm)

20~150	-
151~200	+2
$\mathbf{2 0 1 \sim 2 5 0}$	+2
$\mathbf{2 5 1 \sim 3 0 0}$	+2
$\mathbf{3 0 1 \sim 3 5 0}$	+12
$\mathbf{3 5 1 \sim 4 0 0}$	+22
$\mathbf{4 0 1 \sim 4 5 0}$	+32
$\mathbf{4 5 1 \sim 5 0 0}$	+42

Rear Attachment (mm)

$B=$ Outer tube slide clamp block, hole M8

$C=$ Outer tube slide clamp block, hole ø8

Front Attachment (mm)

Direction of Rear Attachment (Counterclockwise)

$0=$ Without (When rear attachment
is outer tube slide clamp block)

Terms of Use

The user is responsible for determining the suitability of TiMOTION products for a specific application. TiMOTION products are subject to change without prior notice.

